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TABLE I An abbreviated list of the CODATA recommended values of the fundamental constants of physics and chemistry

based on the 2014 adjustment.

Relative std.

Quantity Symbol Numerical value Unit uncert. ur
speed of light in vacuum ¢, Co 299 792 458 gt exact
magnetic constant o 4 x 1077 N A2

=12.566370614... x 1077 N A~? exact
electric constant l/uoc2 €0 8.854 187 817... x 10712 Fm! exact
Newtonian constant of gravitation G 6.67408(31) x 10~ m? kg~ 572 4.7 % 107°
Planck constant h 6.626 070 040(81) x 1034 Js 1.2 X 1078
h/2n h 1.054571800(13) x 1073 Js 1.2 % 107
elementary charge e 1.602 176 6208(98) x 107"  C 6.1 % 10™°
magnetic flux quantum h/2e Do 2.067833831(13) x 10°*° Wb 6.1 x 107°
conductance quantum 2e?/h Go 7.748 091 7310(18) x 10~° S 23 % 1070
electron mass Me 9.109 383 56(11) x 10~3! kg 12 % 10~°
proton mass mp 1.672621898(21) x 10727 kg 12 % 107"
proton-electron mass ratio mp/me  1836.152 673 89(17) 9.5 x 10~
fine-structure constant e?/4meohc o 7.297 352 5664(17) x 1073 23 x 1070
inverse fine-structure constant at 137.035 999 139(31) 2.3 x 10710
Rydberg constant a’mec/2h R 10973 731.568 508(65) m~! 5.9 x 10712
Avogadro constant Na, L 6.022 140 857(74) x 10% mol ! 12 % 197°
Faraday constant Nae F 96 485.332 89(59) Cmeol™? 6.2 x 107
molar gas constant R 8.314 4598(48) Jamol VK™ BIT%1077
Boltzmann constant R/Na k 1.380 648 52(79) x 10723 I 5.7 x 1077
Stefan-Boltzmann constant
(n%/60)k*/h3c? o 5.670367(13) x 1078 Wm2K™* 23x107°
Non-SI units accepted for use with the SI
electron volt (e/C) J eV 1.602 176 6208(98) x 10~ J 6.1 x 107°
(unified) atomic mass unit £m(**C) u 1.660 539 040(20) x 10727 kg 1.2 x 1078




Quaternion Space-Time and Matter

Viktor Arie

In this work, we use the concept of quaternion time and demonstrate that it can be applied
for description of four-dimensional space-time intervals. We demonstrate that the quaternion
time interval together with the finite speed of light propagation allow for a simple intuitive
understanding of the time interval measurement during arbitrary relative motion between a signal
source and observer. We derive a quaternion form of Lorentz time dilation and show that the norm
corresponds to the traditional expression of the Lorentz transformation and represents the measured
value of time intervals, making the new theory inseparable from the theory of measurement. We
determine that the space-time interval in the observer reference frame is given by a conjugate
quaternion expression, which is essential for proper definition of the quaternion derivatives in the
observer reference frame. Then, we apply quaternion differentiation to an arbitrary potential,
which leads to generalized Lorentz force. The second quaternion derivative of the potential leads to
expressions similar to generalized Maxwell equations. Finally, we apply the resulting formalism to
electromagnetic and gravitational interactions and show that the new expressions are similar to the
traditional expressions, with the exception of additional terms, related to scalar fields, that need
further study and experimental verification. Therefore, the new mathematical approach based on
Hamilton’s quaternions may serve as a useful foundation of the unified theory of space-time and
matter.



II. QUATERNION SPACE-TIME

Historically, Rodrigues [1] introduced quaternions
while searching for a method to describe rotation of
three-dimensional solids. His discovery can be considered
the precursor to quaternion algebra, which was formally

introduced and extensively studied by Hamilton [2], [3],
who came across quaternions while searching for mathe-
matical division in the three-dimensional space. Hamil-
ton was quoted: "Time is said to have only one dimen-
sion, and space to have three dimensions. The mathemat-
ical quaternion partakes of both these elements” [4]. In
Hamilton’s definition of quaternions, time is a real scalar




and space is a three-dimensional imaginary vector, which
seems like a brilliant insight predating the discovery of
the four-dimensional space-time.

The key advantages of real quaternion algebra over
other mathematical methods are: a positive Euclidean
norm, description of both rotation and propagation in
three-dimensional space, and well-defined division. Con-
sequently, quaternion algebra deserves further investiga-
tion as an alternative mathematical formalism of space-
time physics.

Since the algebra of real quaternions is the only four-
dimensional division algebra, we introduce the four-
dimensional quaternion manifold,

7—‘1 — (f-(] ] 7_"1’7_'?2.7_'?3) = ('2(]7-() -TlTlf?QTQf 737—3) ? (1>

which we identify with time [5] in order to facilitate an

intuitive physical interpretation.
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Finally from

11

) and

12

), we express the quaternion

time interval in polar form.,

t =1 (cosf,7sinf) =t exp(10), (13)

where the angle, 6, is

defined as.

(

\

cos 6

sinf = —

a function of the velocity, U, and is




Then from

o

and

14

), we obtained the full polar

form of the time interval transformation.

which we can a quaternion form of the Lorentz time di-
lation.




LLes Arts Notrs: Quaternionic Least Squares Regression

Ounateronic Operations via Real Matrix Identities, Onaternionic Tensor and Inverse Tensor Constructions

Edward Solomon
November 21st, 2022

Abstract
In this paper we shall arrive at a simple Closed Form Solution to Quaterionic Least Squares.
Let C, A, B and Z be quaternions, and let C = AZB, then, knowing C,A,B find Z.
The above problem is essential to solving the problem of Quaternionic Least Squares Regression, or, more generally, Hypercomplex Least Squares

Regression, paraphrasing from An Iterative Algorithm for I east Squares Problem in Quaternionic Quantum Theory, from the Computer Physics Communications, Volume 179,
Issue 4, Pages 203-207:

“Given three quaternionic lists, the Data lists A and B and the Observation list, E, then the Quaternionic Least Squares (OLS) is the method of solving overdetermined sets of
quaternion linear equations AXB = E that is appropriate when there is error in the matrix E...and derive an iterative method for find the minimum-norm solution of the QLS problem in

quaternionic quantum theory, such that | |AXB - E| | = min.”

Although their paper did not find a closed form solution to QLS, it uses a system similar to a Neural Network’s minimization of a cost function to yield the
minimum error. In this paper, we shall drive the closed form solution to QLS, and, more generally, HLS, which is Hypercomplex Least Squares, where the

Hypercomplex Number has an even number of dimensions.

An interesting result of Quaternionic Least Squares 1s that the derivation process demonstrates that there exists not two...but three. .. types of Chirality:
Left-handed, Right-Handed. . .and Middle-Handed. If there exists an undiscovered particle with Middle-Handed Chirality, then it would interact differently with
matter and antimatter...such a particle would be the Z between A and B in the equation C = AZB , where A and B represent like measurements of a particleand
its antiparticle.




The Observer, the Observed, Forward and Common Unit of Distance.

Let O be the Observer, who resides at the Origin of a Quaternionic Coordinate System, and let P be the Specimen under observation. Let the vector

from O to P be the observation vector, whose direction shall be named ¢, and its magnitude be equal to 1.

It 1s important that we establish the observation vector as a vector, and not the lone number 1. Multiplying a hypercomplex vector by the observation
vector has no effect on the original vector, since it is an identity, in the same manner that multiplying by 1 has no effect on the original numbers

Thus we write:

1. Forward as + (;= (+ l(;,+ OZ+ O}:+ 0k ) backwards  as — (;— (— lq,+ Ol + 0],+ OI;)
2. Leftas +:=(+ 0(7,+ 1N, 4+ 0;+ 01:),ught as—z—(+ 0q,+ 11+0],+ 01;)
5 Wiyus +j = (+ 0q,+ 0i, + 1j,+ Ok ); down as —j = (+ 0q, + 0i,- 1;,+ Ok)
4. Counter Clockwise + I:= (+ 0q,+ Ol + 0}_:+ 1]:) Clockwise  as — I:= (+ 0(;, + OZ+ 0j, — lk)

Which yields the following Cayley Table:

Quaternionic Cayley Table




Left-Handed Quaternion vs (Improper) Right-Handed Quaternion

Clockwise VS Counterclockwise




Lemma 1.5, Right-Handed Quaternionic Division

t A, B, C be three sets of four real numbers A = {al, az, a3, a.4], B= {bl' bz, b3, b4} C= {Cl' CZ’ C3, C4} then let:

- - - - - - - — — -

@ be a quaternionic vector, @ = (a.lq + azi +a J + (14]?) ;b be a quaternionic vector, b = (blq + bzi +b S + bdﬁ)
e — = -

— — — - —
¢ be a quaternionic vector, C = (C 1([ +c 2i +c 3] +:€ 4a such that, informally, ¢ = a b; propetly, ¢ = a [b ] -

then:

=) BT o |

- -
a=c [W ]4R =c [ b ]4R‘ where W is the Involution (Inverse Matrix) of the Right-Handed B Matrix.

Lemma 1.10, Left-Handed Quaternionic Division

Let A,B,C be four sets of four real numbers, A = {a,, a,, as,as}, B ={by, by, bs,b,} C={cy,,, 3,4} then let:

A be a quaternionic vector, A = (a;q + a,i + azj + azk)

B be a quaternionic vector, B = (byq + byi + bsyj + bsk)
C be a quaternionic vector, C = (¢;q + ¢3i + ¢3j + c,k) such that C = AB; then C = [A4;]B, then:

B =(V4;)C, where V is the Involution (Inverse Matrix) of the Left-Handed A Matrix.




Theorem 1.12, Cayley Tensor Division, C = AXB, solve for X,

/Lemnm 1122: C=AXB

Let A X,B,C be four sets of four real numbers

A be a quaternionic vector, A = (a;q + a,i + a3j + agk)

X be 2 quaternionic vector, X = (x;q + X;i + x3j + x4k)

B be a quaternionic vector, B = (byq + byi + byj + bsk)

C be a quaternionic vector, C = (¢;q + ¢3i +¢3j +¢4k) such that C = AXB; then X = ( [V4z][Wy;] ) C, such that:
[V4p] is the Involution of Ay, [Vapl=[Asz] * ; and that [Wp] is the involution of Byy, [Wy;]=[Byy] .




Proof of 1.12d:

From Lemma 1.12a we have:

c=AxB;thenX =([v _][w,|)c

Then let:

-

2 2

Therelone: (C_; * :z) = (‘;1 x 51) * ((;2 x l—;z) i ([A1,4L] [Bl,4RD; o ([A2.4L] [BZAR]); - ([A1,4L] [81,41?] - [A2,4L] [BZ,4R]);

TieeE: (C_; i C_.)z) i ([A1,4L] [Bl,4R] i3 [A2,4L] [BZ,4RD; IR ; - ([A1,4L] [Bl,4R] = [A2,4L] [Bz,zm])_l (C_; s ;z)

This can be extended for any number of quaternionic sums in this manner (proof by induction). This Theorem also applies to any hypercomplex

numbers. . .thus when we solve Quaternionic Least Squares, we also solve all Hypercomplex Least Squares simultaneously.

QE.D







Theorem 3.1, Closed Form Solution to Hypercomplex Least Squares

Let n be the number of data ponts, leti be the index of each data point.

Let m be the number of d-hypercomplex measurements on each data point; where d is the number of hypercomplex components; let j be the index
of each like measurement.

i th . . .th .
Let x. . be the j like measurement of each i  data pount.

1,

Let X be a block matrix, with n horizontal blocks and m vertical blocks, such that each blockisd X d square real number matrix, and that each

(i, j) block is the form of :

I [; ] if the analyst seeks the right-handed coetficient [B ] iy OF informally: (xi,j)(Bj)
2 R s i = &5,
2. [ i 1]4L[ ]4R if the analystseeks the divine coefficient: [yi.j,lLLBj [yi’j’ZLR , or mformally: (yi,j,l) Bj(yi,j,z)
3. [x, ] if the analyst seeks the left-handed coefficient [B] ; ., or nformally: (B) (x, )
4R Jg Y J Lj

The divine coefticient will be essential for analyzing quantum effects between particles and their respective antiparticles, when searching for

some unknown mediator between them, .. For instance, a positron is an electron with many reversed properties, and the divine quadratic

1) 1s some measurement of the electronand (y, : )

ij, ij,

relationship of (y” )Bj(yij 2) may be the only relationship that exists between them , where (y, ,

1s some like measurement of the positron.



-

Let z, be the observed response of each datapoint; let Z be a block matrix, with n horizontal blocks and only one vertical block, such that each block
; )

-

: th ;
isd X 1 real number vector, and each i block contains the vector z. .
1

— -

Then we seek the optimal values of B such that XB = Z minimizes the collective real number magnitude of the error.

- - - -

— — — —
Let the set of allx. . be partitioned into three smaller sets of a@. ,c. ,b. ,wherea. contansallx, of theleft chirality, ¢, containsall x,  of the
l 1 v Lu 1 § 1 l

: L gl 2 J g J
— - th - -

divine chirality, and b, contains all x. . of theright chirality, and let the j  columns of X be rearranged so that all @, precede all ¢, which precede

) g ) < i i,u

iu i

5
allb.  from left to right, and let this reordering be the Design Matrix F |, let 1, y, v be the respective lengths of those partitions, such that
L,V

’

m=Qp+y+v).

Now let: [ [ ] = [F 4L][F 4L], where [F 4L] is the Block-Conjugate-Chiral-Transpose of [F 4L] , consisting of m horizontal and vertical blocks of squared X d

real number matrices, such that each block (s, t) block contains the matrix.




if s< pandt <

if p<s<vy andt <

st

Mo
I
M
,—,
g
,.’
h ,—.
l.
=
l—l
L
™
\—J

=n
3.1 .= ) [x t] [x ] if s>y andt < .
s, iy mtl,, st 4R
= s 10+ 1),
4, [ = : x] if s<pand p<tc<y.
s,t = y ij,1 y ij,2 | " st & " t Y
o ) |2 Jgr d4r
i=n ( '_;) ] '_; g ! _)4 -
5 [ = : if 1< &< and p<t<y.
e Y| 17 w2 Y i .2 ‘ = + ¥
e (A daL b 4R 4L 4R
e 1= 1),
6 = x] if s > and p<t<y.
sE = y ij1 y ij,2 g ¥ L Y
A dqr L d4r
O SO (O
7 o x | |x t] if Ss< pandt > vy.
55 iy L m, 1 s, 4L
el IE I Sy ot
8 = x if 1< s < and t > v.
st ‘i | m,t_4R y ij,1 y ij.2 l = Y
i=1 4L 4R
=nr 7
9. o 5 X ] if s > and t > v.
st m,t st Y Y

i=1 " “4R" 4R




—1

Let [8]=[1]

*
Now let [W] = [F 4L] Z be a block matrix, with n horizontal blocks and only one vertical block, such that each block is d X 1 real number

-

th ;
vector, and each t  block contains the vector Wt’ such that:

N [ x >
L. W = o9 if t <
i=l | m, AL
— i=n —)* —)* -
2. w = z if pn<t<
B Y ij,2 Y ij1 ‘ 4
=1 4L 4R
- ST -
3. 0w = X b4 if t>vy.
t ¢ m,t
I=1" 4R

5
Then B = [] [W] , which is a block matrix, with n horizontal blocks and only one vertical block, such that each block is d X 1 real number vector,

th : i p—" : o : : th ;
and each ¢ block contains the vector Br , which 1s the optimal hypercomplex coefficient for each corresponding t  measurement in the data array

that mmimizes that collective real number magnitude of error across alln data point responses.

Q.E.D



sy
We shall first test Theorem 3.1 without error for the case of z,
4

Q expected vs Q actual

@ sl Trendline for g scraal RF = 0.983 @ i wal B
wds .
s o5
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4 -)
e o e 3€
P .
- o2
% we s
-
. 3
Pea

Experiment 3.2,1, Bivariate Left-Handed Quaternionic Error

-

— —
— [[31] X 53 [Bz] X, in order to ensure that the exact simulated value of 3 is returned.
i, i,
R 4R

4

1
1 J expected vs J actual
4| @ i Teendlive for g sstcal BY =
(I
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After this, we shall introduce both types of error, and measure the R value with several differing intensities of the introduced error.

K expected vs K actual
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Experiment 3.2.4, Trivariate Admixture Quaternionic Error

A (xi,l)Bl ¥ (yi,z,l)BZ(yi,Z,Z) + B3(351',3) = [xi,lLLBl * [yi,z,lLR [yi,z,lLLBZ T [xi,3]4RB3 ’ [yi,Z,ILR [yi,z,lLLBZ = [yi,z,lLL[yi,Z,lLR B2
g - — ” | | —: —
b [Gi,Z]_ [y i,Z,I] [y i,2,1] and[ Gi,Z]_ y i2,1 y i2,1
4L 4R m -

<
Then we seek the following Fehu and W matrices, such that B is the product of Othala (inverse Fehu)and W .

i=n|[ e e i=n[ _x i=n[ _s s || = i=n[_s -
5% X X G ] X X X z
.;1 i1 i1 i1 i1 [ 0,2 -1 i1 i3 ,;1 il i
s 4L 4L Sk 4L Gk 4t 4R bt 4L
i=n_ L i=n_ i=n_ st || == i=n_ -
* G ||x *G][G] *G]x *G]z
Sk i,Z] i1 Z | i,2 i,2 o i,2 i,3 ! 2]
i=1 41, i=1 i=1 | d4R i=1
=n[_s g i=n[_s i=n[ s | = i=n[_s ”
X %X X X X X A
i,3 1d: i,3 [ i,Z] ; i,3 i,3 i,3 i
=1L "l 4L =107 Aap R =1L 7 lep




Let g,, be the quaternionic output vector: Gy = gw.1q + Gw ol + Gwi] + Gw.k
Let @,, be the quaternionic input vector: @, = @y, ;1q + Aol + &y 3] + Ak

Let Ew be the quaternionic input vector: 7z,w = hy G + hyot + hy 5] + by, Jc,

Remember that Quaternionic Multiplication is not Commutative; the following Quaternionic Manifold has an R? = 0999

= 3 5 5 5 e 5 o5 i 2y -
Then gy, = ko; + (C_iwkf,i 3 k?,zhw) +: (kz.f(a\;') 3 (awhw)kz,_? + (hwaw)k.?.;‘ + (hw) k2.4) +...

35 7(aw) E (avghw)koz T (aw)k;;(hwaw) -+ Ctvavv)k;, + (hwaw) k 5 + (hwawhw)k;o’ + (aw)k' '(

0.0018653 EoR: iyl 0.1064711 EEVSEAEYOLE -0.107493 EEUEERGEEN 0.1685778 EESSUIIE 1.5785288 EEUGLIkyAN -0.0274986 EEVEEILELIEE 1.2282328 [EEGLTIRLY

0.0016339 RNV -0.0218351 0.032233 USULELVEVAN 0.11421890 QEOMAYELLLE 05149882 EVSUZLISEN 0.5109155 [EEOMEA{EET:] 0.66052 0.0700367 REUPXEPEEVE -0.168964
| ISS——— e

0.002133 0.0225548 QAGENUSRE -0.0028455 EOMZEELLVEN 0.0418391 EEOWZEIFELAN 03155202 EMOPYELIEN 0.0266562 EEW7 Lyl 1.5102548 EEMpAZEE 0.0075692 RSP
O —

DXl VAl -0.0106878 VLG EYELCEN -0.056783 (P EP A -0.5094917 EEISEILTSER 0.2838012 EEVESELLRIEN 0.2137266 EEETIGILEN 1.1441195 EEVEEYEYEVA -0.2479567 EVBUZRITY




q part; Sigal vs Ford: G% vs Expected G%

@ z;twoee

| part; Fiore vs Conine: G% vs Expected G%
@ 52 wzecs 0508+ 10360

i part; Marchant vs Cisco: G% vs Expected G%
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Algebraic Hexonions
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Algebraic Sedenions
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Algebraic Icosidgions

+2 43 +4 +5 +6 +7 +8 +9 +10+11 +12+13 +14 +15+16 +17 +18 +19 +20 +21

1+5. Rl -5 BTY - 1T - oJSE - 1 REY - 1 BT - 15[ET) - o PETREE

-1 -6 +7 -8 -9 -10 +11 -12 -13 -14 +15 -16 -17 -18 +19 -20 -21 -22 -2

5 . 1E+9 +10f88] + 12088 - 14JB0 - 168 - 15[ T] - 20 G

6 7 -8 -1 -10 +11 -12 -13 -14 +15 16 -17 -18 +19 -20 |21 -22 -2 +3 4
el - I ﬂ BN - fSE- B - 1 Y- 15 -19l+21 4 55
-8 49 -10 -11 -12 -1 -14 +15 -16 -17 -18 +19 -20 -21 -2 +5 -6
Y- 1ofST- oRE- 1N - 1R - 1R o TR < B
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10 PRTITY - ey - | | JREL . R o P REER 8 9
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+12 .1sﬂ+1sm -17 g3t +19 21 +22 -1 5814 : . -10 -11

13 -14 -15 -16 +17 -18 -19 -20 +21 32 BN -1 R -8 +9 -10 +11 -12 -

+14+15 -17 +19 -21 -zz 3 i -1 -10 -11 -12 -13

IS +15 -16 +17 -18 -19 -20 +21 + ” +3 +5 +9 -10 +11 -12 +13 -14

R +16 -17 +l9 21 + -3 ) . -7 . -9 -11 -12 -13 -14 -15
Ryf 17 -18 -19 -20 +21 ~33 +3 +5 +7 H +9 nﬂl -1 #13 -14 +15 -16
18 +18+l9 21 033 3 -5 -7 -9 ﬂ-u-ls -1 15 -16 17

+l9 -20 +21 +‘.’,.7 +3 B4 +5 +7 +9 +lln+l3+15 -1 #17 -18
Rl +20 -21 —,’..’ -3 -5 = 9 n -11 Gg®i -13 Ea€ -15 B30 -17 -1 -19

+21 -22 +3 B2l +5 +7 H +9 ﬁﬂl +12 +l3m+15 +I7E+19 -1
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Non Orientable Algebraic Quintonion Cayley Table.
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